

© 2001, 2004 OSGi Alliance
 All Rights Reserved.

Listeners Considered Harmful:
The “Whiteboard” Pattern

Technical Whitepaper

Revision 2.0
17 August 2004

 Listeners Considered Harmful: The “Whiteboard” pattern

1 Introduction ..3

2 Background ..3

2.1 The Listener Pattern ...3
2.2 The OSGi Environment...4
2.3 The Whiteboard Pattern..5

3 An Example...6

3.1 An LCD Display bundle...6
3.2 Coding rules..6
3.3 Listeners implementation..6
3.4 Whiteboard implementation ..10

4 Comparison ..12

5 Conclusion..15

6 Document Information...15

6.1 References..15
6.2 Authors..15

17 August 2004 © 2001, 2004 OSGi Alliance Page 2
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

1 Introduction
The purpose of this whitepaper is to explain a pattern that was found to be very successful in the usage of the
OSGi specifications. The dynamic nature of the OSGi service model requires extra effort from the programmer
to track the changes. The traditional model with listeners was found to be overly complicated and error prone.
This paper analyzes the issues and proposes an easier and inherently more reliable model.

2 Background
2.1 The Listener Pattern
Java 1.0 contained a poorly designed model for handling events for user interface components in AWT. A major
problem with this model is the event storms that can happen as well as overall inefficiency. When Sun created a
new component model, they redesigned the event model to fit the new component model (beans). Cornerstones
of this event model are the following parties:

1 The event source – an object that can generate an event.

2 The event object – an object that carries the information about the event.

3 The event listener – an object that receives the event.

Panel

MouseMotionEve
nt

MouseMotionList
enerMouseMotionList

ener

event source
event listener

event object

Figure 1 Example actors in the event model of Java

For example, to receive notification about the motion of a mouse, an object implementing the
MouseMotionListener interface must be registered with an event source, such as an AWT Panel. The event
source provides notification in the form of a MouseMotionEvent object sent to all listeners registered with the
event source.

Some listener interfaces have many methods and are thus non-trivial to implement. To reduce the
implementation effort required for a listener, default implementations of the listener interface are often provided
and are called adapters.

One of the novel aspects of the listener pattern was the fact that event sources can support multiple listeners.
Prior to the listener pattern, it was common to have APIs for which a single target object could be set with a
callback. The listener pattern implicitly assumes that any number of listeners can be registered and that having
a single listener is the exception. This was a huge improvement by making programmers aware that they are
not in full control and that they must share the VM and application objects with others.

The listener pattern allows an introspective application to connect different components with events and
listeners. It quickly became successful, and applications like the BeanBox use the listener pattern to dynamically
create applications from a graphic UI.

17 August 2004 © 2001, 2004 OSGi Alliance Page 3
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

However, the listener pattern has drawbacks. Presently, there are more than 130 event, adapter, and listener
classes in Java 1.3. This creates an overhead in class files, affecting start-up time and program size, and also
increases runtime overhead. In most cases, an event source has only a single listener registered. Still, the event
source must take the overhead of correctly delivering an event to many listeners. This requires at least one
extra Vector to hold the list of listeners and creates demand for “monster” classes like AWTEventMulticaster that
try to maintain type safety of the pattern while still reaping the benefits of reusability. These problems are not
important for desktop or server applications. When memory and CPU speed is abundant, a 100KB class file
overhead for listener, adapter, and events classes is not a concern. In contrast, embedded environments, one
of the primary targets of the OSGi specification, are sensitive to these overheads.

Another issue that is not obvious is the dependency that is created between the event source and the listener.
Designs must correctly manage this dependency. If the event source goes away, the listener must clean up any
references it holds. If the listener goes away, the event source should remove it from the list of listeners. These
are the so called life cycle issues. They usually are not a concern for traditional Java applications. The
initialization phase of a traditional application, where listeners are added, is easy to implement correctly and
even easier to verify (it just does not work if done wrong). However, the removal phase is much more difficult to
verify and is often not handled at all. In workstation environments, where an application is started by the user,
the life cycle management of listeners is a non-issue. Most applications assume that the cleanup is done when
exiting or that no clean up is necessary. Again, no such assumptions can be made for embedded applications
that run continuously and can be extremely dynamic. For example, the tutorial concerning how to write a
MouseMotionListener [1] does not mention the fact that listeners should have a life cycle. [2] contains an article
that discusses these loiterers and offers some solutions.

2.2 The OSGi Environment
The requirements for the OSGi environment include the following:

• Small devices

• Collaboration model

• Continuously up and running VM

• Life cycle management

These requirements come at a great cost.

Small devices are usually heavily constrained in persistent storage (often flash memory). Each class file has an
overhead of at least 300 to 500 bytes, which adds up surprisingly fast. Use of these classes results in additional
overhead. This implies that the number of classes should be kept low. Toward this end, during the early phases
of the OSGi specification development, it was decided not to create ad-hoc exceptions or adapter classes.

Small devices are also constrained in performance and dynamic memory. Therefore, during the development of
the OSGi specification, attempts were made to minimize the requirements for creating superfluous objects that
used memory.

The OSGi collaboration model is implemented with the service registry. This registry allows bundles
(applications) to register services. Services are normal Java objects that are typically defined by a Java
interface allowing different implementations to co-exist. The dynamic nature of the registry makes it necessary
to track services that can come and go at any time.

The continuously up and running nature of the OSGi environment combined with the life cycle management and
service registry requires different programming rules. The requirements of the OSGi environment invalidate the
following major hidden assumption in most Java code: Once you have a reference to an object, the object does
not go away.

17 August 2004 © 2001, 2004 OSGi Alliance Page 4
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

In an OSGi environment, the owner of an object can, and at some point, will go away. Services are dynamically
added and removed from the registry. Java packages previously available may become unavailable. This highly
dynamic environment dictates that original programming patterns must be revisited and reconsidered for this
environment.

A case where this is necessary is usage of the listener pattern in the OSGi environment. Here, an event listener
must take action when a an event source is unregistered. Vice-versa, the event source must monitor the bundle
of the event listener and take action when this bundle is stopped. It turned out that managing these
dependencies is not trivial.

2.3 The Whiteboard Pattern
The whiteboard pattern leverages the OSGi framework’s service registry instead of implementing a private
registry as required by the listener pattern. Instead of having event listeners track event sources and then
register themselves with the event source, the whiteboard pattern has event listeners register themselves as a
service with the OSGi framework. When the event source has an event object to deliver, the event source calls
all event listeners in the service registry.

Remarkably, the event source is not registered with the framework as a service. This makes bundles using the
whiteboard pattern significantly smaller and easier to implement. The inter-bundle dependency between the
event source and the event listener is handled by the framework and requires almost no code in the event
source and event listener bundles.

Event source
Bundle

Listener Bundle
Event Listener
Bundle

gets registers

receives service registrations

Registry

service

Figure 2 Whiteboard actors in the OSGi framework

Designs must often trade off between complexity in application bundles and server bundles. Servers by their
nature are fewer in number and more system oriented. This usually means that it is better to place the
complexity in the server and not in the client. However, the whiteboard is one of those rare cases where this
trade off is not necessary. Both server and application become simpler because they reuse the framework
registry. Both application bundles and server bundles can delegate the responsibility for managing the details of
inter-bundle dependencies to the framework.

As an added benefit, the use of the OSGi framework’s service registry provides more than just life cycle
management. The service registry has additional benefits for the programmer:

• Debugging. The event listeners are visible in the registry and any framework support tool can inspect
the registry. This makes inter-bundle dependencies more visible.

• Security. OSGi framework ServicePermissions can control access to an event source because event
listeners must have permission to register the event listener interface.

• Properties. The registry supports properties that can be used by the server to select a subset of all
listeners. This mechanism can be used for configuration management.

17 August 2004 © 2001, 2004 OSGi Alliance Page 5
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

3 An Example
3.1 An LCD Display bundle
The primary problem in OSGi environments is the handling of inter-bundle dependencies: one bundle
referencing an object owned or created by another bundle. This problem can be explained using the following
simple example.

The example consists of an LCD Display service that cycles through a number of screens. The content of the
screens is provided by ContentProviders. This is a simple interface that can be implemented by any bundles
that wants to be displayed on the LCD. ContentProviders are queried for their content when a new screen is
needed. In this example, a DisplayManager is responsible for cycling through all the screens in the registry and
a ClockManager implementing ContentProvider delivers the current time. System.out is used instead of a real
display to keep the example as simple as possible.

Display ContentProvider
ContentProvider

Cycles through screens

Figure 3 Actors in the example LCD Display application

The focus of this example is to show how the dependency between the DisplayManager and the ClockManager
is handled. In the OSGi environment, the DisplayManager and the ClockManager both can come and go at any
moment.

This example will be implemented in the following sections by first using the listener pattern followed by the
whiteboard pattern.

3.2 Coding rules
Code size comparisons between different approaches are subjective. It is easy to bloat one approach and
minimize the other approach by combining classes and expressions. In the following approaches to the
example, the same coding rules are followed. Different responsibilities (interfaces) are implemented in their own
class. No expressions are combined and one statement is written per line.

3.3 Listeners implementation
The listener approach uses a ContentProvider (ClockManager) that tracks the Display object. The
DisplayManager registers each ContentProvider and cycles through all the active ContentProviders.

The Display and ContentProvider interfaces must be implemented by any object wanting to act as a Display or a
ContentProvider, respectively.

package org.osgi.example.display;

public interface Display {

 void addContentProvider(ContentProvider p);

 void removeContentProvider(ContentProvider p);

}

package org.osgi.example.display;

public interface ContentProvider {

 String getContent();

17 August 2004 © 2001, 2004 OSGi Alliance Page 6
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

}

Figure 4 Interfaces with the listener pattern

Next is the implementation of the ClockManager. The ClockManager tracks Display services in the registry with
a DisplayTracker. The DisplayTracker extends the ServiceTracker. This utility class is designed to simplify
monitoring services.

When a new Display service is registered with the OSGi framework, a Clock object is created and registered
with the Display service as a ContentProvider. These objects are unregistered when the bundle is stopped or
when the Display service is unregistered.1

The ClockManager class implements the BundleActivator to keep the code simple.

package org.osgi.example.listener.clock;

import org.osgi.example.display.*;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

import java.util.*;

class Clock implements ContentProvider {

 Display display;

 Clock(Display display) {

 this.display = display;

 display.addContentProvider(this);

 }

 void dispose() {

 display.removeContentProvider(this);

 }

 public String getContent() { return new Date().toString(); }

}

class DisplayTracker extends ServiceTracker {

 DisplayTracker(BundleContext context) {

 super(context, Display.class.getName(), null);

 }

 public Object addingService(ServiceReference ref) {

 Display display = (Display) context.getService(ref);

 return new Clock(display);

 }

 public void removedService(ServiceReference ref, Object obj) {

 Clock clock = (Clock) obj;

 clock.dispose();

 context.ungetService(ref);

 }

}

1 The code size could be slightly reduced by implementing the ServiceTrackerCustomizer interface on the ClockManager rather than
extending ServiceTracker. However, this is not done because it only works for a single listener type. When an application uses the listener
pattern, there are usually several listener types to be implemented. This problem led to inner classes in Java 1.1.

17 August 2004 © 2001, 2004 OSGi Alliance Page 7
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

public class ClockManager implements BundleActivator {

 DisplayTracker tracker;

 public void start(BundleContext context) {

 tracker = new DisplayTracker(context);

 tracker.open();

 }

 public void stop(BundleContext context) {

 tracker.close();

 }

}

Figure 5 ClockManager source using the listener pattern

Next is the implementation of the DisplayManager. The Display service must be implemented using a
ServiceFactory. A ServiceFactory allows the DisplayManager to monitor the bundles registering
ContentProvider services, and take action when such a bundle gets and ungets this Display service. It is
provably impossible to write such a service correctly without using a ServiceFactory.

A single bundle can register more than one ContentProvider. For each bundle, a ContentProviderRegistration
object is created that tracks the multiple ContentProvider registrations from that bundle. This allows the
DisplayManager to properly remove all ContentProviders registered by a bundle when that bundle releases the
Display service, for example, when the bundle is stopped.

DisplayManager

ContentProvider

ContentProvider
Registration

DisplayFactory

1

0..n

1 0..n

Figure 6 Multiple ContentProvider services per bundle

To keep the code simple, the DisplayManager implements BundleActivator and Runnable. The run() method
implements the core display cycle as an infinite loop, cycling to all the registered ContentProviders at 5 second
intervals.

package org.osgi.example.listener.display;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

import java.util.*;

import org.osgi.example.display.*;

class ContentProviderRegistration implements Display {

 Vector providers;

 DisplayManager manager;

17 August 2004 © 2001, 2004 OSGi Alliance Page 8
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

 ContentProviderRegistration(DisplayManager manager) {

 this.manager = manager;

 providers = new Vector();

 }

 public synchronized void addContentProvider(ContentProvider p) {

 providers.addElement(p);

 manager.addContentProvider(p);

 }

 public synchronized void removeContentProvider(ContentProvider p) {

 if (providers.indexOf(p) >= 0) {

 providers.removeElement(p);

 manager.removeContentProvider(p);

 }

 }

 void synchronized dispose() {

 for (Enumeration e= providers.elements(); e.hasMoreElements();) {

 ContentProvider p = (ContentProvider) e.nextElement();

 manager.removeContentProvider(p);

 }

 providers = null;

 }

}

class DisplayFactory implements ServiceFactory {

 DisplayManager manager;

 DisplayFactory(DisplayManager manager) {

 this.manager = manager;

 }

 public Object getService(Bundle b, ServiceRegistration r) {

 return new ContentProviderRegistration(manager);

 }

 public void ungetService(Bundle b, ServiceRegistration r, Object s) {

 ContentProviderRegistration cpr = (ContentProviderRegistration) s;

 cpr.dispose();

 }

}

public class DisplayManager implements BundleActivator, Runnable {

 Thread thread;

 ServiceRegistration registration;

 DisplayFactory factory;

 Vector providers;

 public void start(BundleContext context) {

 providers = new Vector();

 factory = new DisplayFactory(this);

17 August 2004 © 2001, 2004 OSGi Alliance Page 9
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

 registration = context.registerService(

 Display.class.getName(),

 factory,

 null

);

 thread = new Thread(this, "DisplayManager Listener");

 thread.start();

 }

 public void stop(BundleContext context) {

 thread = null;

 }

 public synchronized void run() {

 Thread current = Thread.currentThread();

 int n = 0;

 while (current == thread) {

 if (providers.size() != 0) {

 if (n >= providers.size())

 n = 0;

 ContentProvider cp = (ContentProvider)

 providers.elementAt(n++);

 System.out.println("LISTENER: " + cp.getContent());

 }

 try { wait(5000); } catch(InterruptedException e) {}

 }

 }

 void addContentProvider(ContentProvider p) {

 providers.addElement(p);

 }

 void removeContentProvider(ContentProvider p) {

 providers.removeElement(p);

 }

}

Figure 7 DisplayManager source with the listener pattern

3.4 Whiteboard implementation
Instead of tracking Display objects and then registering a ContentProvider with the Display, the whiteboard
approach only registers a ContentProvider as a service with the OSGi framework. This ContentProvider is
tracked by the DisplayManager. The DisplayManager is not registered with the framework. This makes the
code significantly smaller and easier to implement.

Another advantage of the whiteboard approach is the requirement for only a single service interface: the
ContentProvider.

package org.osgi.example.display;

public interface ContentProvider {

 String getContent();

}

17 August 2004 © 2001, 2004 OSGi Alliance Page 10
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

Figure 8 Interface with the whiteboard pattern

The ClockManager implementation is greatly simplified. No trackers are necessary because it only registers a
Clock object to provide the content. Clean up is completely delegated to the framework.

package org.osgi.example.whiteboard.clock;

import org.osgi.framework.*;

import org.osgi.example.display.*;

import java.util.*;

class Clock implements ContentProvider {

 Clock() {}

 public String getContent() { return new Date().toString(); }

}

public class ClockManager implements BundleActivator {

 ServiceRegistration registration;

 Clock clock = new Clock();

 public void start(BundleContext context) {

 registration = context.registerService(

 ContentProvider.class.getName(),

 clock,

 null);

 }

 public void stop(BundleContext context) {}

}

Figure 9 ClockManager source with the whiteboard pattern

The DisplayManager must track all the ContentProvider objects in the registry. The DisplayManager can use a
standard ServiceTracker without customization as it is only interested in the set of active ContentProviders. The
primary purpose of the ServiceTracker is tracking service objects. As a result, the DisplayManager
implementation becomes significantly smaller. As in the Listener example, the DisplayManager implements the
display cycle in a thread that calls the run() method.

package org.osgi.example.whiteboard.display;

import org.osgi.framework.*;

import org.osgi.util.tracker.*;

import org.osgi.example.display.*;

public class DisplayManager implements BundleActivator, Runnable {

 Thread thread;

 ServiceTracker tracker;

 public void start(BundleContext context) {

 tracker = new ServiceTracker(context, ContentProvider.class.getName(),

 null);

 tracker.open();

 thread = new Thread(this, "DisplayManager Whiteboard");

 thread.start();

 }

17 August 2004 © 2001, 2004 OSGi Alliance Page 11
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

 public void stop(BundleContext context) {

 tracker.close();

 thread = null;

 }

 public synchronized void run() {

 Thread current = Thread.currentThread();

 int n = 0;

 while (current == thread) {

 Object [] providers = tracker.getServices();

 if (providers != null && providers.length > 0) {

 if (n >= providers.length)

 n = 0;

 ContentProvider cp = (ContentProvider) providers[n++];

 System.out.println("WHITEBOARD " + cp.getContent());

 }

 try { wait(5000); } catch(InterruptedException e) {}

 }

 }

}

Figure 10 DisplayManager source with the whiteboard pattern

4 Comparison
The following table provides a line-by-line code comparison of the implementation with the listener versus the
implementation with the whiteboard.

Table 1 Listeners versus Whiteboard

Listener Pattern Whiteboard Pattern
public interface Display {
 void addContentProvider(ContentProvider p);
 void removeContentProvider(ContentProvider p);
}

public int
 S

erface ContentProvider {
tring getContent();

public interface ContentProvider {
 String getContent();

} }
class Clock implements ContentProvider {

y) {
this.display = display;

 display.addContentProvider(this);
 }
 void dispose() {
 display.removeContentProvider(this);
 }
 public String getContent() { return new Date().toString(); }
}

vider {

 public String getContent() { return new Date().toString(); }
}

 Display display;
Clock(Display displa

class Clock implements ContentPro

Clock() {}

17 August 2004 © 2001, 2004 OSGi Alliance Page 12
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

Listener Pattern Whiteboard Pattern
class DisplayTracker extends ServiceTracker {

ext context) {
splay.class.getName(), null);

erence ref) {
lay) context.getService(ref);

lic void removedService(ServiceReference ref, Object obj) {
Clock) obj;

);

 DisplayTracker(BundleCont
 super(context, Di
 }
 public Object addingService(ServiceRef
 Display display = (Disp
 return new Clock(display);
 }
 pub
 Clock clock = (
 clock.dispose(
 context.ungetService(ref);
 }
}

public class ClockManager implements BundleActivator {
 D

isplayTracker tracker;

);

erviceRegistration registration;
ock clock = new Clock();

art(BundleContext context) {
 registration = context.registerService(
 ContentProvider.class.getName(),
 clock,
 null);
 }
 public void stop(BundleContext context) {}

}

 public void start(BundleContext context) {
 tracker = new DisplayTracker(this, context
 tracker.open();
 }

 public void stop(BundleContext context) {
 tracker.close();
 }
}

public class ClockManager implements BundleActivator {
 S
 Cl
 public void st

class ContentProviderRegistration implements Display {
ctor providers;
playManager manager;

ector();

ntentProvider(ContentProvider p) {
providers.addElement(p);

addContentProvider(p);

entProvider(ContentProvider p) {
if (providers.indexOf(p) >= 0) {

id synchronized dispose() {
 e.hasMoreElements();) {

e.nextElement();

 Ve
 Dis

 ContentProviderRegistration(DisplayManager manager) {
 this.manager = manager;
 providers = new V
 }
 public synchronized void addCo

 manager.
 }
 public synchronized void removeCont

 providers.removeElement(p);
 manager.removeContentProvider(p);
 }
 }
 vo
 for (Enumeration e= providers.elements();
 ContentProvider p = (ContentProvider)
 manager.removeContentProvider(p);
 }
 providers = null;
 }
}

17 August 2004 © 2001, 2004 OSGi Alliance Page 13
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

Listener Pattern Whiteboard Pattern
class DisplayFactory implements ServiceFactory {
 DisplayManager manager;
 DisplayFactory(ayManager ma Displ nager) {

blic Object getService(Bundle b, ServiceRegistration r) {

dle b, ServiceRegistration r, Object s) {
on cpr = (ContentProviderRegistration) s;

 this.manager = manager;
 }
 pu
 return new ContentProviderRegistration(manager);
 }
 public void ungetService(Bun
 ContentProviderRegistrati
 cpr.dispose();
 }
}

public class DisplayManager implements BundleActivator, Runnable {
 Thread
 ServiceRegistration

thread;
registration;

ory;
viders;

lic void start(BundleContext context) {

ce(

his, "DisplayManager Listener");
read.start();

t context) {

ile (current == thread) {

e() != 0) {
 if (n >= providers.size())
 n = 0;

entProvider cp = (ContentProvider) providers.elementAt(n++);
Content());

0); rruptedException e) {}

entProvider p) {

entProvider(ContentProvider p) {

public class DisplayManager implements BundleActivator, Runnable {
 Thread thread;
 ServiceTracker tracker;

 public void start(BundleContext context) {
 tracker = new ServiceTracker(context, ContentProvider.class.getName(), null);
 tracker.open();

 thread = new Thread(this, "DisplayManager Whiteboard");
 thread.start();
 }
 public void stop(BundleContext context) {
 tracker.close();
 thread = null;
 }
 public synchronized void run() {
 Thread current = Thread.currentThread();
 int n = 0;
 while (current == thread) {
 Object [] providers = tracker.getServices();
 if (providers != null && providers.length > 0) {
 if (n >= providers.length)
 n = 0;
 ContentProvider cp = (ContentProvider) providers[n++];
 System.out.println("WHITEBOARD " + cp.getContent());
 }

 try { wait(5000); } catch(InterruptedException e) {}
 }
 }

}

 DisplayFactory fact
 Vector pro
 pub
 providers = new Vector();
 factory = new DisplayFactory(this);
 registration = context.registerServi
 Display.class.getName(),
 factory,
 null
);
 thread = new Thread(t
 th
 }
 public void stop(BundleContex

 thread = null;
 }
 public synchronized void run() {
 Thread current = Thread.currentThread();
 int n = 0;
 wh

 if (providers.siz

 Cont
 System.out.println("LISTENER: " + cp.get
 }
 try { wait(500 } catch(Inte
 }
 }
 void addContentProvider(Cont
 providers.addElement(p);
 }
 void removeCont
 providers.removeElement(p);
 }
}

O ntly smaller and simpler implementation. It is even simpler than
the code size suggests. What is pattern has significantly more deadlock
possibilities than the whiteboard pattern.

bviously, the whiteboard approach is a significa
not obvious is the fact that the listener

17 August 2004 © 2001, 2004 OSGi Alliance Page 14
 All Rights Reserved.

 Listeners Considered Harmful: The “Whiteboard” pattern

5 Conclusion
T ard ttern ges the solid mechanis OSG ework to address the dynamic life
cycle of objects in the OSGi environment. It significan h life cycle issues. Both the Display
implementation as well as the ContentProvider implementation become significantly smaller and easier to
u nd re less to programming errors

T to put the programm raditional Java application
development on top of the OSGi environment. In practice, the listener patte
changes one can, and must, expect in the OSGi env o e
basic programming rules with which Java programmers are familiar.

So why is the whiteboard pattern not always accepted at face value?

Obviously, the learning curve of the OSGi environment is a factor. The many programming patterns that apply to
traditional applications must be reconsidered in OSGi. Newcomers to OSGi attempt to apply the standard
patterns without realizing the intricacies and issues.

A ht be progra ch places the
programmer of the listener fully in control. He decides
he is in charge of all the dependencies between event source and listener.

T in the OSGi environme tion that runs independently
from other applications. It is a component running in borate with other bundles.
Bundles need to be managed and configured by ope w these operators to manage the bundles,
bundles need to be written with the philosophy that they are being used and are not in direct control. Bundles
should be written to provide a service that can be nfigured together with other bundles and to provide
maximum combinability. Often these other bundles are unknown to the designer of the original bundle. The
w ports the philosophy of bundle significantly better than the
l

All these reasons are compelling reasons to apply pattern whenever there is a design that
requires managing inter-bundle dependencies.

6 Document Informat
6.1 References

/uiswing/events/m

he whitebo pa levera ms in the i fram
tly simplifies andling

nderstand, a a prone .

he listener pattern attempts ing rules and patterns of t
rn is not suited for the dynamic

ir nment. The OSGi environment changes some of th

Java

nother and more subtle reason mig mmer philosophy. The listener approa
the event sources with which to register his listener, and

his philosophy is questionable nt. A bundle is not an applica
 the framework that can colla
rators. To allo

co

hiteboard pattern sup s not being in direct control
istener pattern.

the whiteboard

ion

[1] http://java.sun.com/docs/books/tutorial ouselistener.html

[2] http://www.javaworld.com/javaworld/javatips/jw-javatip79.html

6.2 Authors

Peter Kriens, aQute, 9C, Avenue St. Drézéry, 34160 France
Peter.Kriens@aQute.biz

BJ Hargrave, IBM, 11501 Burnet Road, Austin, TX 78758 USA
hargrave@us.ibm.com

17 August 2004 © 2001, 2004 OSGi Alliance Page 15
 All Rights Reserved.

© 2001, 2004 OSGi Alliance
 All Rights Reserved.

ce and its members specify, create, advance, and promote wide
of an open delivery and management platform for application

home, commercial buildings, automotive and industrial environments.
lliance serves as the focal point for a collaborative ecosystem of service
evelopers, manufacturers, and consumers. The OSGi specifications

 ideal for both vertical and cross-industry business
models within home, vehicle, mobile and industrial environments. As an independent

OSGi Alliance

The OSGi Allian
industry adoption
services in
The OSGi A
providers, d
define a standardized, component oriented, computing environment for networked
services. OSGi technology is currently being delivered in products and services
shipping from several Fortune 100 companies. The OSGi Alliance’s horizontal
software integration platform is

non-profit corporation, the OSGi Alliance also provides for the fair and uniform
creation and distribution of relevant intellectual property – including specifications,
reference implementations, and test suites – to all its members.

HOW TO REACH US:

Bishop Ranch 6
2400 Camino Ramon, Suite 375
San Ramon, CA 94583 USA

Phone: +1.925.275.6625
E-mail: marketinginfo@osgi.org
Web: http://www.osgi.org

OSGi is a trademark of the OSGi Alliance in the United States, other countries, or

d trademarks are trademarks of Sun Microsystems, Inc. in
h.

spective companies.

both.

Java and all Java-base
the United States, other countries, or bot

All other marks are trademarks of their re

	Introduction
	Background
	The Listener Pattern
	The OSGi Environment
	The Whiteboard Pattern

	An Example
	An LCD Display bundle
	Coding rules
	Listeners implementation
	Whiteboard implementation

	Comparison
	Conclusion
	Document Information
	References
	Authors

